嵌入
创建嵌入
POST /embeddings
使用选定的大型语言模型(LLM)生成嵌入。
Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less. Example Python code for counting tokens.
The quick brown fox jumped over the lazy dogThe string that will be turned into an embedding.
""Example: This is a test.The array of strings that will be turned into an embedding.
['This is a test.']The array of integers that will be turned into an embedding.
[1212, 318, 257, 1332, 13]ID of the model to use. You can use the List models API to see all of your available models, or see our Model overview for descriptions of them.
text-embedding-3-smallThe format to return the embeddings in. Can be either float or base64.
floatExample: floatPossible values: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.
user-1234OK
OK
此端点允许您使用特定模型为文本输入生成嵌入。响应将是与 OpenAI 的嵌入对象 格式一致的嵌入对象。
SDK 使用
Portkey SDK 中的 embeddings.create 方法便于使用各种 LLM 生成嵌入。该方法提供了一个类似于 OpenAI API 的简单接口,用于生成嵌入。
方法签名
参数
requestParams (Object): 嵌入请求的参数。支持所有 OpenAI 参数。这些参数包括输入文本和模型,并由 Portkey 自动转换为其他非 OpenAI 的 LLM。其他 LLM 不支持的参数将被省略。
configParams (Object): 请求的附加配置选项。这是一个可选参数,可以包含此特定请求的自定义配置选项。这些选项将覆盖在 Portkey 客户端中设置的配置。
示例用法
响应格式
响应将符合Portkey API的嵌入对象架构,通常包括与OpenAI提供的嵌入对象格式一致的嵌入向量列表。
Last updated